• bitcoinBitcoin (BTC) $ 90,487.00
  • ethereumEthereum (ETH) $ 3,029.00
  • tetherTether (USDT) $ 0.999944
  • xrpXRP (XRP) $ 2.23
  • bnbBNB (BNB) $ 895.38
  • usd-coinUSDC (USDC) $ 0.999708
  • tronTRON (TRX) $ 0.276549
  • staked-etherLido Staked Ether (STETH) $ 3,026.26
  • dogecoinDogecoin (DOGE) $ 0.155484
  • cardanoCardano (ADA) $ 0.435783
  • figure-helocFigure Heloc (FIGR_HELOC) $ 1.01
  • whitebitWhiteBIT Coin (WBT) $ 58.73
  • wrapped-stethWrapped stETH (WSTETH) $ 3,696.43
  • wrapped-bitcoinWrapped Bitcoin (WBTC) $ 90,410.00
  • bitcoin-cashBitcoin Cash (BCH) $ 546.10
  • wrapped-beacon-ethWrapped Beacon ETH (WBETH) $ 3,282.99
  • hyperliquidHyperliquid (HYPE) $ 36.25
  • chainlinkChainlink (LINK) $ 13.46
  • usdsUSDS (USDS) $ 0.999571
  • binance-bridged-usdt-bnb-smart-chainBinance Bridged USDT (BNB Smart Chain) (BSC-USD) $ 1.00
  • leo-tokenLEO Token (LEO) $ 9.69
  • zcashZcash (ZEC) $ 530.45
  • stellarStellar (XLM) $ 0.258887
  • wethWETH (WETH) $ 3,030.81
  • wrapped-eethWrapped eETH (WEETH) $ 3,276.21
  • moneroMonero (XMR) $ 395.86
  • ethena-usdeEthena USDe (USDE) $ 0.999375
  • coinbase-wrapped-btcCoinbase Wrapped BTC (CBBTC) $ 90,504.00
  • litecoinLitecoin (LTC) $ 87.41
  • hedera-hashgraphHedera (HBAR) $ 0.148645
  • avalanche-2Avalanche (AVAX) $ 14.77
  • suiSui (SUI) $ 1.55
  • shiba-inuShiba Inu (SHIB) $ 0.000009
  • daiDai (DAI) $ 1.00
  • world-liberty-financialWorld Liberty Financial (WLFI) $ 0.163798
  • ethena-staked-usdeEthena Staked USDe (SUSDE) $ 1.21
  • crypto-com-chainCronos (CRO) $ 0.111887
  • the-open-networkToncoin (TON) $ 1.61
  • uniswapUniswap (UNI) $ 6.33
  • usdt0USDT0 (USDT0) $ 0.999857
  • susdssUSDS (SUSDS) $ 1.08
  • polkadotPolkadot (DOT) $ 2.35
  • paypal-usdPayPal USD (PYUSD) $ 0.999744
  • mantleMantle (MNT) $ 1.07
  • memecoreMemeCore (M) $ 1.92
  • canton-networkCanton (CC) $ 0.088198
  • bittensorBittensor (TAO) $ 310.39
  • aaveAave (AAVE) $ 185.86
  • usd1-wlfiUSD1 (USD1) $ 0.999009
  • bitget-tokenBitget Token (BGB) $ 3.63
  • nearNEAR Protocol (NEAR) $ 1.94
  • okbOKB (OKB) $ 110.67
  • blackrock-usd-institutional-digital-liquidity-fundBlackRock USD Institutional Digital Liquidity Fund (BUIDL) $ 1.00
  • internet-computerInternet Computer (ICP) $ 4.23
  • aster-2Aster (ASTER) $ 1.11
  • falcon-financeFalcon USD (USDF) $ 0.998932
  • ethereum-classicEthereum Classic (ETC) $ 14.15
  • tether-goldTether Gold (XAUT) $ 4,157.61
  • pi-networkPi Network (PI) $ 0.256119
  • ethenaEthena (ENA) $ 0.281130
  • jito-staked-solJito Staked SOL (JITOSOL) $ 178.21
  • pepePepe (PEPE) $ 0.000005
  • jupiter-perpetuals-liquidity-provider-tokenJupiter Perpetuals Liquidity Provider Token (JLP) $ 4.77
  • binance-peg-wethBinance-Peg WETH (WETH) $ 3,034.91
  • solanaSolana (SOL) $ 143.23
  • rainRain (RAIN) $ 0.007583
  • pump-funPump.fun (PUMP) $ 0.002945
  • aptosAptos (APT) $ 2.28
  • ondo-financeOndo (ONDO) $ 0.519252
  • htx-daoHTX DAO (HTX) $ 0.000002
  • kucoin-sharesKuCoin (KCS) $ 12.16
  • worldcoin-wldWorldcoin (WLD) $ 0.657366
  • kaspaKaspa (KAS) $ 0.057442
  • polygon-ecosystem-tokenPOL (ex-MATIC) (POL) $ 0.138148
  • pax-goldPAX Gold (PAXG) $ 4,166.74
  • syrupusdcsyrupUSDC (SYRUPUSDC) $ 1.14
  • usdtbUSDtb (USDTB) $ 1.00
  • bfusdBFUSD (BFUSD) $ 0.999015
  • rocket-pool-ethRocket Pool ETH (RETH) $ 3,482.54
  • algorandAlgorand (ALGO) $ 0.146907
  • binance-bridged-usdc-bnb-smart-chainBinance Bridged USDC (BNB Smart Chain) (USDC) $ 0.999759
  • ripple-usdRipple USD (RLUSD) $ 0.999803
  • official-trumpOfficial Trump (TRUMP) $ 6.27
  • gatechain-tokenGate (GT) $ 10.65
  • quant-networkQuant (QNT) $ 84.87
  • arbitrumArbitrum (ARB) $ 0.218401
  • wbnbWrapped BNB (WBNB) $ 895.38
  • binance-staked-solBinance Staked SOL (BNSOL) $ 155.19
  • cosmosCosmos Hub (ATOM) $ 2.54
  • global-dollarGlobal Dollar (USDG) $ 0.999698
  • filecoinFilecoin (FIL) $ 1.68
  • vechainVeChain (VET) $ 0.013932
  • hashnote-usycCircle USYC (USYC) $ 1.11
  • hash-2Provenance Blockchain (HASH) $ 0.022228
  • flare-networksFlare (FLR) $ 0.014379
  • kinetic-staked-hypeKinetiq Staked HYPE (KHYPE) $ 36.41
  • kelp-dao-restaked-ethKelp DAO Restaked ETH (RSETH) $ 3,206.76
  • ignition-fbtcFunction FBTC (FBTC) $ 90,642.00
  • skySky (SKY) $ 0.045490
  • lombard-staked-btcLombard Staked BTC (LBTC) $ 90,589.00
  • liquid-staked-ethereumLiquid Staked ETH (LSETH) $ 3,231.78
  • xdce-crowd-saleXDC Network (XDC) $ 0.054413
  • nexoNEXO (NEXO) $ 1.00
  • render-tokenRender (RENDER) $ 1.83
  • solv-btcSolv Protocol BTC (SOLVBTC) $ 90,379.00
  • first-digital-usdFirst Digital USD (FDUSD) $ 0.996631
  • story-2Story (IP) $ 2.73
  • syrupusdtsyrupUSDT (SYRUPUSDT) $ 1.11
  • sei-networkSei (SEI) $ 0.140285
  • dashDash (DASH) $ 67.95
  • superstate-short-duration-us-government-securities-fund-ustbSuperstate Short Duration U.S. Government Securities Fund (USTB) (USTB) $ 10.90
  • pancakeswap-tokenPancakeSwap (CAKE) $ 2.48
  • bonkBonk (BONK) $ 0.000010
  • morphoMorpho (MORPHO) $ 1.52
  • jupiter-exchange-solanaJupiter (JUP) $ 0.256958
  • ousgOUSG (OUSG) $ 113.44
  • janus-henderson-anemoy-aaa-clo-fundJanus Henderson Anemoy AAA CLO Fund (JAAA) $ 1.02
  • mantle-staked-etherMantle Staked Ether (METH) $ 3,282.84
  • renzo-restaked-ethRenzo Restaked ETH (EZETH) $ 3,224.78
  • pudgy-penguinsPudgy Penguins (PENGU) $ 0.011817
  • arbitrum-bridged-wbtc-arbitrum-oneArbitrum Bridged WBTC (Arbitrum One) (WBTC) $ 90,266.00
  • starknetStarknet (STRK) $ 0.154169
  • fetch-aiArtificial Superintelligence Alliance (FET) $ 0.269230
  • clbtcclBTC (CLBTC) $ 90,422.00
  • ondo-us-dollar-yieldOndo US Dollar Yield (USDY) $ 1.11
  • jupiter-staked-solJupiter Staked SOL (JUPSOL) $ 165.20
  • spx6900SPX6900 (SPX) $ 0.716972
  • aerodrome-financeAerodrome Finance (AERO) $ 0.723391
  • curve-dao-tokenCurve DAO (CRV) $ 0.443721
  • virtual-protocolVirtuals Protocol (VIRTUAL) $ 0.984200
  • fasttokenFasttoken (FTN) $ 1.41
  • bridged-usdc-polygon-pos-bridgePolygon Bridged USDC (Polygon PoS) (USDC.E) $ 0.999706
  • optimismOptimism (OP) $ 0.326212
  • polygon-pos-bridged-dai-polygon-posPolygon PoS Bridged DAI (Polygon POS) (DAI) $ 0.999918
  • usdaiUSDai (USDAI) $ 1.00
  • stakewise-v3-osethStakeWise Staked ETH (OSETH) $ 3,142.02
  • beldexBeldex (BDX) $ 0.081927
  • injective-protocolInjective (INJ) $ 6.03
  • lido-daoLido DAO (LDO) $ 0.669039
  • blockstackStacks (STX) $ 0.323153
  • msolMarinade Staked SOL (MSOL) $ 192.01
  • tbtctBTC (TBTC) $ 90,398.00
  • newton-projectAB (AB) $ 0.006329
  • usual-usdUsual USD (USD0) $ 0.997909
  • the-graphThe Graph (GRT) $ 0.051972
  • l2-standard-bridged-weth-baseL2 Standard Bridged WETH (Base) (WETH) $ 3,029.95
  • tezosTezos (XTZ) $ 0.509791
  • celestiaCelestia (TIA) $ 0.631874
  • monadMonad (MON) $ 0.047385
  • arbitrum-bridged-weth-arbitrum-oneArbitrum Bridged WETH (Arbitrum One) (WETH) $ 3,031.21
  • myx-financeMYX Finance (MYX) $ 2.64
  • telcoinTelcoin (TEL) $ 0.005182
  • true-usdTrueUSD (TUSD) $ 0.996817
  • cgeth-hashkey-cloudcgETH Hashkey Cloud (CGETH.HASH) $ 2,460.42
  • iotaIOTA (IOTA) $ 0.117504
  • mantle-bridged-usdt-mantleMantle Bridged USDT (Mantle) (USDT) $ 1.00
  • flokiFLOKI (FLOKI) $ 0.000050
  • kaiaKaia (KAIA) $ 0.081973
  • ether-fiEther.fi (ETHFI) $ 0.774545
  • stader-ethxStader ETHx (ETHX) $ 3,258.95
  • usddUSDD (USDD) $ 0.999290
  • gtethGTETH (GTETH) $ 3,029.14
  • pyth-networkPyth Network (PYTH) $ 0.079149
  • trust-wallet-tokenTrust Wallet (TWT) $ 1.09
  • pendlePendle (PENDLE) $ 2.74
  • doublezeroDoubleZero (2Z) $ 0.128260
  • ethereum-name-serviceEthereum Name Service (ENS) $ 11.77
  • eutblSpiko EU T-Bills Money Market Fund (EUTBL) $ 1.21
  • ether-fi-liquid-ethEther.Fi Liquid ETH (LIQUIDETH) $ 3,209.55
  • merlin-chainMerlin Chain (MERL) $ 0.415885
  • plasmaPlasma (XPL) $ 0.219791
  • conflux-tokenConflux (CFX) $ 0.083513
  • steakhouse-usdc-morpho-vaultSteakhouse USDC Morpho Vault (STEAKUSDC) $ 1.11
  • sonic-3Sonic (S) $ 0.112216
  • bitcoin-svBitcoin SV (BSV) $ 21.28
  • decredDecred (DCR) $ 24.75
  • the-sandboxThe Sandbox (SAND) $ 0.161673
  • wrapped-hypeWrapped HYPE (WHYPE) $ 36.22
  • ghoGHO (GHO) $ 0.999401
  • bittorrentBitTorrent (BTT) $ 0.00000042
  • heliumHelium (HNT) $ 2.19
  • usdbUSDB (USDB) $ 0.997858
  • sun-tokenSun Token (SUN) $ 0.020956
  • swethSwell Ethereum (SWETH) $ 3,293.66
  • binance-peg-dogecoinBinance-Peg Dogecoin (DOGE) $ 0.155834
  • sbtc-2sBTC (SBTC) $ 90,372.00
  • coinbase-wrapped-staked-ethCoinbase Wrapped Staked ETH (CBETH) $ 3,351.45
  • dogwifcoindogwifhat (WIF) $ 0.389159
  • apenftAINFT (NFT) $ 0.00000039
  • lorenzo-wrapped-bitcoinLorenzo Wrapped Bitcoin (ENZOBTC) $ 90,194.00
  • flowFlow (FLOW) $ 0.235197
  • jasmycoinJasmyCoin (JASMY) $ 0.007739
  • justJUST (JST) $ 0.038297
  • bitcoin-avalanche-bridged-btc-bAvalanche Bridged BTC (Avalanche) (BTC.B) $ 90,336.00
  • benqi-liquid-staked-avaxBENQI Liquid Staked AVAX (SAVAX) $ 18.21
  • ether-fi-staked-ethether.fi Staked ETH (EETH) $ 3,031.49
  • theta-tokenTheta Network (THETA) $ 0.368877
  • galaGALA (GALA) $ 0.007864
  • fartcoinFartcoin (FARTCOIN) $ 0.361738
  • gnosisGnosis (GNO) $ 134.81

AI Models Might Be Able to Predict What You’ll Buy Better Than You Can

0 31

AI Models Might Be Able to Predict What You'll Buy Better Than You Can

Forget focus groups: A new study found that large language models can forecast whether you want to buy something with striking accuracy, dramatically outperforming traditional marketing tools.

Researchers at the University of Mannheim and ETH Zürich have found that large language models can replicate human purchase intent—the “How likely are you to buy this?” metric beloved by marketers—by transforming free-form text into structured survey data.

In a paper published last week, the team introduced a method called “Semantic Similarity Rating,” which converts the model’s open-ended responses into numerical “Likert” ratings, a five-point scale used in traditional consumer research.

Rather than asking a model to pick a number between one and five, the researchers had it respond naturally—“I’d definitely buy this,” or “Maybe if it were on sale”—and then measured how semantically close those statements were to canonical answers like “I would definitely buy this” or “I would not buy this.”



Each answer was mapped in embedding space to the nearest reference statement, effectively turning LLM text into statistical ratings. “We show that optimizing for semantic similarity rather than numeric labels yields purchase-intent distributions that closely match human survey data,” the authors wrote. “LLM-generated responses achieved 90% of the reliability of repeated human surveys while preserving natural variation in attitudes.”

In tests across 9,300 real human survey responses about personal-care products, the SSR method produced synthetic respondents whose Likert distributions nearly mirrored the originals. In other words: when asked to “think like consumers,” the models did.

Why it matters

The finding could reshape how companies conduct product testing and market research. Consumer surveys are notoriously expensive, slow, and vulnerable to bias. Synthetic respondents—if they behave like real ones—could let companies screen thousands of products or messages for a fraction of the cost.

It also validates a deeper claim: that the geometry of an LLM’s semantic space encodes not just language understanding but attitudinal reasoning. By comparing answers in embedding space rather than treating them as literal text, the study demonstrates that model semantics can stand in for human judgment with surprising fidelity.

At the same time, it raises familiar ethical and methodological risks. The researchers tested only one product category, leaving open whether the same approach would hold for financial decisions or politically charged topics. And synthetic “consumers” could easily become synthetic targets: the same modeling techniques could help optimize political persuasion, advertising, or behavioral nudges.

As the authors put it, “market-driven optimization pressures can systematically erode alignment”—a phrase that resonates far beyond marketing.

A note of skepticism

The authors acknowledge that their test domain—personal-care products—is narrow and may not generalize to high-stakes or emotionally charged purchases. The SSR mapping also depends on carefully chosen reference statements: small wording changes can skew results. Moreover, the study relies on human survey data as “ground truth,” even though such data is notoriously noisy and culturally biased.

Critics point out that embedding-based similarity assumes that language vectors map neatly onto human attitudes, an assumption that may fail when context or irony enters the mix. The paper’s own reliability numbers—90% of human test-retest consistency—sound impressive but still leave room for significant drift. In short, the method works on average, but it’s not yet clear whether those averages capture real human diversity or simply reflect the model’s training priors.

The bigger picture

Academic interest in “synthetic consumer modeling” has surged in 2025 as companies experiment with AI-based focus groups and predictive polling. Similar work by MIT and the University of Cambridge has shown that LLMs can mimic demographic and psychometric segments with moderate reliability, but none have previously demonstrated a close statistical match to real purchase-intent data.

For now, the SSR method remains a research prototype, but it hints at a future where LLMs might not just answer questions—but represent the public itself.

Whether that’s an advance or a hallucination in the making is still up for debate.

Source

Leave A Reply

Your email address will not be published.