• bitcoinBitcoin (BTC) $ 91,599.00
  • ethereumEthereum (ETH) $ 2,992.31
  • tetherTether (USDT) $ 0.998919
  • xrpXRP (XRP) $ 2.14
  • bnbBNB (BNB) $ 898.97
  • usd-coinUSDC (USDC) $ 0.999705
  • tronTRON (TRX) $ 0.290543
  • staked-etherLido Staked Ether (STETH) $ 2,989.41
  • dogecoinDogecoin (DOGE) $ 0.151042
  • cardanoCardano (ADA) $ 0.458472
  • figure-helocFigure Heloc (FIGR_HELOC) $ 1.03
  • wrapped-stethWrapped stETH (WSTETH) $ 3,649.87
  • wrapped-bitcoinWrapped Bitcoin (WBTC) $ 91,393.00
  • whitebitWhiteBIT Coin (WBT) $ 50.93
  • wrapped-beacon-ethWrapped Beacon ETH (WBETH) $ 3,239.42
  • hyperliquidHyperliquid (HYPE) $ 38.30
  • zcashZcash (ZEC) $ 629.70
  • bitcoin-cashBitcoin Cash (BCH) $ 486.12
  • usdsUSDS (USDS) $ 0.999875
  • chainlinkChainlink (LINK) $ 13.16
  • binance-bridged-usdt-bnb-smart-chainBinance Bridged USDT (BNB Smart Chain) (BSC-USD) $ 0.999191
  • leo-tokenLEO Token (LEO) $ 9.14
  • stellarStellar (XLM) $ 0.245211
  • ethena-usdeEthena USDe (USDE) $ 0.997915
  • wethWETH (WETH) $ 2,992.42
  • wrapped-eethWrapped eETH (WEETH) $ 3,236.56
  • moneroMonero (XMR) $ 404.32
  • litecoinLitecoin (LTC) $ 90.99
  • coinbase-wrapped-btcCoinbase Wrapped BTC (CBBTC) $ 91,598.00
  • avalanche-2Avalanche (AVAX) $ 14.34
  • hedera-hashgraphHedera (HBAR) $ 0.143145
  • suiSui (SUI) $ 1.59
  • shiba-inuShiba Inu (SHIB) $ 0.000008
  • uniswapUniswap (UNI) $ 7.24
  • daiDai (DAI) $ 0.998472
  • ethena-staked-usdeEthena Staked USDe (SUSDE) $ 1.20
  • the-open-networkToncoin (TON) $ 1.75
  • polkadotPolkadot (DOT) $ 2.64
  • usdt0USDT0 (USDT0) $ 0.998781
  • crypto-com-chainCronos (CRO) $ 0.103380
  • canton-networkCanton (CC) $ 0.109517
  • susdssUSDS (SUSDS) $ 1.07
  • world-liberty-financialWorld Liberty Financial (WLFI) $ 0.135379
  • memecoreMemeCore (M) $ 2.14
  • mantleMantle (MNT) $ 1.10
  • paypal-usdPayPal USD (PYUSD) $ 1.00
  • bittensorBittensor (TAO) $ 309.24
  • internet-computerInternet Computer (ICP) $ 5.38
  • nearNEAR Protocol (NEAR) $ 2.19
  • usd1-wlfiUSD1 (USD1) $ 0.998721
  • bitget-tokenBitget Token (BGB) $ 3.71
  • c1usdCurrency One USD (C1USD) $ 0.999903
  • aaveAave (AAVE) $ 166.27
  • aster-2Aster (ASTER) $ 1.17
  • okbOKB (OKB) $ 111.81
  • blackrock-usd-institutional-digital-liquidity-fundBlackRock USD Institutional Digital Liquidity Fund (BUIDL) $ 1.00
  • ethereum-classicEthereum Classic (ETC) $ 14.10
  • falcon-financeFalcon USD (USDF) $ 0.996539
  • tether-goldTether Gold (XAUT) $ 4,013.44
  • aptosAptos (APT) $ 2.70
  • pepePepe (PEPE) $ 0.000005
  • ethenaEthena (ENA) $ 0.257945
  • pi-networkPi Network (PI) $ 0.223600
  • jupiter-perpetuals-liquidity-provider-tokenJupiter Perpetuals Liquidity Provider Token (JLP) $ 4.56
  • jito-staked-solJito Staked SOL (JITOSOL) $ 161.83
  • binance-peg-wethBinance-Peg WETH (WETH) $ 2,995.95
  • pump-funPump.fun (PUMP) $ 0.002952
  • solanaSolana (SOL) $ 130.05
  • htx-daoHTX DAO (HTX) $ 0.000002
  • ondo-financeOndo (ONDO) $ 0.523628
  • kucoin-sharesKuCoin (KCS) $ 11.91
  • polygon-ecosystem-tokenPOL (ex-MATIC) (POL) $ 0.141770
  • hash-2Provenance Blockchain (HASH) $ 0.029172
  • worldcoin-wldWorldcoin (WLD) $ 0.638682
  • filecoinFilecoin (FIL) $ 1.99
  • official-trumpOfficial Trump (TRUMP) $ 6.84
  • pax-goldPAX Gold (PAXG) $ 4,031.07
  • usdtbUSDtb (USDTB) $ 0.999670
  • algorandAlgorand (ALGO) $ 0.151377
  • bfusdBFUSD (BFUSD) $ 0.998812
  • rocket-pool-ethRocket Pool ETH (RETH) $ 3,434.31
  • cosmosCosmos Hub (ATOM) $ 2.70
  • binance-bridged-usdc-bnb-smart-chainBinance Bridged USDC (BNB Smart Chain) (USDC) $ 1.00
  • kinetic-staked-hypeKinetiq Staked HYPE (KHYPE) $ 38.53
  • gatechain-tokenGate (GT) $ 10.67
  • arbitrumArbitrum (ARB) $ 0.222909
  • vechainVeChain (VET) $ 0.014295
  • wbnbWrapped BNB (WBNB) $ 899.53
  • syrupusdcsyrupUSDC (SYRUPUSDC) $ 1.14
  • binance-staked-solBinance Staked SOL (BNSOL) $ 140.78
  • quant-networkQuant (QNT) $ 79.29
  • global-dollarGlobal Dollar (USDG) $ 0.999689
  • kaspaKaspa (KAS) $ 0.042176
  • skySky (SKY) $ 0.048820
  • syrupusdtsyrupUSDT (SYRUPUSDT) $ 1.10
  • ignition-fbtcFunction FBTC (FBTC) $ 91,978.00
  • ripple-usdRipple USD (RLUSD) $ 1.00
  • hashnote-usycCircle USYC (USYC) $ 1.11
  • flare-networksFlare (FLR) $ 0.013633
  • kelp-dao-restaked-ethKelp DAO Restaked ETH (RSETH) $ 3,161.67
  • lombard-staked-btcLombard Staked BTC (LBTC) $ 91,658.00
  • dashDash (DASH) $ 81.68
  • liquid-staked-ethereumLiquid Staked ETH (LSETH) $ 3,216.79
  • render-tokenRender (RENDER) $ 1.91
  • first-digital-usdFirst Digital USD (FDUSD) $ 0.995803
  • solv-btcSolv Protocol BTC (SOLVBTC) $ 91,292.00
  • nexoNEXO (NEXO) $ 0.953476
  • morphoMorpho (MORPHO) $ 1.79
  • sei-networkSei (SEI) $ 0.147320
  • story-2Story (IP) $ 2.77
  • starknetStarknet (STRK) $ 0.198453
  • renzo-restaked-ethRenzo Restaked ETH (EZETH) $ 3,183.54
  • xdce-crowd-saleXDC Network (XDC) $ 0.050043
  • superstate-short-duration-us-government-securities-fund-ustbSuperstate Short Duration U.S. Government Securities Fund (USTB) (USTB) $ 10.89
  • jupiter-exchange-solanaJupiter (JUP) $ 0.260886
  • bonkBonk (BONK) $ 0.000010
  • rainRain (RAIN) $ 0.003383
  • ousgOUSG (OUSG) $ 113.32
  • pancakeswap-tokenPancakeSwap (CAKE) $ 2.29
  • janus-henderson-anemoy-aaa-clo-fundJanus Henderson Anemoy AAA CLO Fund (JAAA) $ 1.01
  • fasttokenFasttoken (FTN) $ 1.74
  • pudgy-penguinsPudgy Penguins (PENGU) $ 0.011864
  • mantle-staked-etherMantle Staked Ether (METH) $ 3,236.12
  • arbitrum-bridged-wbtc-arbitrum-oneArbitrum Bridged WBTC (Arbitrum One) (WBTC) $ 91,387.00
  • clbtcclBTC (CLBTC) $ 91,879.00
  • aerodrome-financeAerodrome Finance (AERO) $ 0.778988
  • immutable-xImmutable (IMX) $ 0.357746
  • virtual-protocolVirtuals Protocol (VIRTUAL) $ 1.06
  • fetch-aiArtificial Superintelligence Alliance (FET) $ 0.265287
  • ondo-us-dollar-yieldOndo US Dollar Yield (USDY) $ 1.10
  • optimismOptimism (OP) $ 0.357528
  • celestiaCelestia (TIA) $ 0.775983
  • stakewise-v3-osethStakeWise Staked ETH (OSETH) $ 3,282.78
  • beldexBeldex (BDX) $ 0.082782
  • injective-protocolInjective (INJ) $ 6.18
  • jupiter-staked-solJupiter Staked SOL (JUPSOL) $ 149.86
  • lido-daoLido DAO (LDO) $ 0.685988
  • blockstackStacks (STX) $ 0.332016
  • polygon-pos-bridged-dai-polygon-posPolygon PoS Bridged DAI (Polygon POS) (DAI) $ 0.999667
  • telcoinTelcoin (TEL) $ 0.006309
  • bridged-usdc-polygon-pos-bridgePolygon Bridged USDC (Polygon PoS) (USDC.E) $ 0.999704
  • newton-projectAB (AB) $ 0.006791
  • usdaiUSDai (USDAI) $ 1.00
  • the-graphThe Graph (GRT) $ 0.054314
  • curve-dao-tokenCurve DAO (CRV) $ 0.401277
  • l2-standard-bridged-weth-baseL2 Standard Bridged WETH (Base) (WETH) $ 2,993.33
  • tezosTezos (XTZ) $ 0.523963
  • tbtctBTC (TBTC) $ 91,545.00
  • usual-usdUsual USD (USD0) $ 0.998132
  • decredDecred (DCR) $ 31.44
  • msolMarinade Staked SOL (MSOL) $ 173.99
  • arbitrum-bridged-weth-arbitrum-oneArbitrum Bridged WETH (Arbitrum One) (WETH) $ 2,992.63
  • ether-fiEther.fi (ETHFI) $ 0.841059
  • mantle-bridged-usdt-mantleMantle Bridged USDT (Mantle) (USDT) $ 0.997157
  • iotaIOTA (IOTA) $ 0.121617
  • true-usdTrueUSD (TUSD) $ 0.995016
  • cgeth-hashkey-cloudcgETH Hashkey Cloud (CGETH.HASH) $ 2,460.42
  • kaiaKaia (KAIA) $ 0.083779
  • flokiFLOKI (FLOKI) $ 0.000051
  • pyth-networkPyth Network (PYTH) $ 0.083110
  • doublezeroDoubleZero (2Z) $ 0.137253
  • myx-financeMYX Finance (MYX) $ 2.48
  • steakhouse-usdc-morpho-vaultSteakhouse USDC Morpho Vault (STEAKUSDC) $ 1.11
  • stader-ethxStader ETHx (ETHX) $ 3,211.49
  • gtethGTETH (GTETH) $ 2,990.13
  • ether-fi-liquid-ethEther.Fi Liquid ETH (LIQUIDETH) $ 3,179.80
  • ethereum-name-serviceEthereum Name Service (ENS) $ 12.10
  • trust-wallet-tokenTrust Wallet (TWT) $ 1.10
  • plasmaPlasma (XPL) $ 0.240661
  • usddUSDD (USDD) $ 0.998680
  • ghoGHO (GHO) $ 0.998305
  • the-sandboxThe Sandbox (SAND) $ 0.170109
  • sonic-3Sonic (S) $ 0.116997
  • syrupMaple Finance (SYRUP) $ 0.385298
  • conflux-tokenConflux (CFX) $ 0.085087
  • wrapped-hypeWrapped HYPE (WHYPE) $ 38.33
  • bitcoin-svBitcoin SV (BSV) $ 21.50
  • eutblSpiko EU T-Bills Money Market Fund (EUTBL) $ 1.21
  • sun-tokenSun Token (SUN) $ 0.022011
  • heliumHelium (HNT) $ 2.26
  • bittorrentBitTorrent (BTT) $ 0.00000043
  • spx6900SPX6900 (SPX) $ 0.450968
  • flowFlow (FLOW) $ 0.250923
  • usdbUSDB (USDB) $ 0.998890
  • sbtc-2sBTC (SBTC) $ 91,361.00
  • soon-2SOON (SOON) $ 1.40
  • swethSwell Ethereum (SWETH) $ 3,264.38
  • ether-fi-staked-ethether.fi Staked ETH (EETH) $ 2,989.38
  • theta-tokenTheta Network (THETA) $ 0.391401
  • coinbase-wrapped-staked-ethCoinbase Wrapped Staked ETH (CBETH) $ 3,299.47
  • binance-peg-dogecoinBinance-Peg Dogecoin (DOGE) $ 0.151340
  • galaGALA (GALA) $ 0.008297
  • apenftAINFT (NFT) $ 0.00000039
  • dogwifcoindogwifhat (WIF) $ 0.384424
  • jasmycoinJasmyCoin (JASMY) $ 0.007769
  • bitcoin-avalanche-bridged-btc-bAvalanche Bridged BTC (Avalanche) (BTC.B) $ 91,539.00
  • pendlePendle (PENDLE) $ 2.26
  • vaultaVaulta (A) $ 0.231941
  • mimblewimblecoinMimbleWimbleCoin (MWC) $ 33.70
  • merlin-chainMerlin Chain (MERL) $ 0.348401

The 5 Biggest ‘Tells’ That Something Was Written By AI

0 2

The 5 Biggest 'Tells' That Something Was Written By AI

Is everything written by AI these days? Is this article?

The proliferation of large language models has prompted a new, wary literacy: people can now read a paragraph and wonder who—or what—wrote it. That anxiety exists for good reason.

Recent studies continue to show that the ever-increasing flood of machine-generated prose differs from human writing in increasingly not-so-subtle ways, from specific word choice to easily identifiable structural tics. These patterns matter because they affect far more than school essays and research theses; they shape corporate communications, journalism, and interpersonal email in ways that can muddle trust or authenticity.

Researchers surveying stylometric detection techniques have found consistent, measurable patterns in lexical variety, clause structure, and function-word distributions—a statistical fingerprint that persists across tasks and prompts. While these tells are shrinking with every model generation—OpenAI just fixed its over reliance on em dashes, for instance—the difference between AI slop and stuff that’s human-written is still large enough to inform how readers and editors approach suspiciously polished text.



A recent Washington Post analysis of 328,744 ChatGPT messages reinforces this point with real-world data. It found that the model leans heavily on emojis, a narrow palette of favorite words, and everyone’s favorite tell, “negative parallelism: “It’s not X, it’s Y;” or “It’s less about X and more about Y.”

The Post also warned against overconfidence: none of these traits prove AI authorship; they only raise the probability. Still, when a piece of writing exhibits several of them, the signal gets harder to ignore.

Here are the five strongest signals that a text may have been machine-generated, each anchored in current research.

The 5 most common AI tells

  1. Negative parallelism and oversimplified contrast

    AI overuses the neat, dramatic hinge of “It’s not X, it’s Y,” and its cousin, “not just X, but Y.” These structures create the illusion of insight while supplying very little. Stylometric studies show that LLM outputs tend toward balanced, formulaic clause structures rather than the uneven, intuitive rhythms human writers use. In the Post’s dataset, variations of “not just X, but Y” alone appeared in roughly 6% of all July messages—an astonishing percentage for a single rhetorical tic.

  2. Over-neat structure and conspicuously consistent rhythm

    LLM-generated text often reads like it was written by someone who revises compulsively but never improvises. Paragraphs follow textbook patterns, transitions are frictionless, and the cadence is almost mathematically even, according to a recent analysis in Nature. Human writing—even careful writing—typically reflects digressions, interruptions, tonal shifts, and asymmetric pacing. Stylometric work comparing LLM outputs to human short stories finds that models exhibit far narrower variance in sentence length and syntactic shape.

  3. Smoothed-out emotional tone and overly courteous hedging

    AI tends to sound friendly in a way no adult actually sounds unless they work in HR or customer support. Phrases like “It’s understandable that…” or endings that gently summarize everything (“Ultimately…”) show up with unnatural regularity. Quantitative reviews of detection methods note that LLM-generated prose exhibits more uniform sentiment and fewer abrupt emotional modulations than human text.

  4. Vague abstractions and evolving “safe” vocabulary

    Models rely heavily on generic nouns—”ecosystem,” “framework,” “dynamic”—and verbs like “leverage,” “unlock,” or “navigate” when they run out of specifics. Studies consistently show lower lexical diversity and heavier nominalization in AI text. The Washington Post and Nature analyses also found that certain AI clichés aren’t static: the infamous “delve” has largely faded, replaced by new favorites like “core” and “modern.” This matters because vocabulary tells evolve quickly; structure is more reliable than any fixed word list.

  5. Balanced clauses and conspicuously careful phrasing

    LLMs love symmetry: “While X is true, Y is also important,” or “Whether you’re a beginner or an expert…” These structures feel safe because they avoid commitment. Stylometric studies show that AI text overuses certain function-word patterns and clause constructions at rates that differ sharply from human baselines. Humans tend to be either more abrupt or more discursive; machines aim for diplomatic balance every time.

By the way, most of this article was written by AI.

Source

Leave A Reply

Your email address will not be published.